35 research outputs found

    OccFormer: Dual-path Transformer for Vision-based 3D Semantic Occupancy Prediction

    Full text link
    The vision-based perception for autonomous driving has undergone a transformation from the bird-eye-view (BEV) representations to the 3D semantic occupancy. Compared with the BEV planes, the 3D semantic occupancy further provides structural information along the vertical direction. This paper presents OccFormer, a dual-path transformer network to effectively process the 3D volume for semantic occupancy prediction. OccFormer achieves a long-range, dynamic, and efficient encoding of the camera-generated 3D voxel features. It is obtained by decomposing the heavy 3D processing into the local and global transformer pathways along the horizontal plane. For the occupancy decoder, we adapt the vanilla Mask2Former for 3D semantic occupancy by proposing preserve-pooling and class-guided sampling, which notably mitigate the sparsity and class imbalance. Experimental results demonstrate that OccFormer significantly outperforms existing methods for semantic scene completion on SemanticKITTI dataset and for LiDAR semantic segmentation on nuScenes dataset. Code is available at \url{https://github.com/zhangyp15/OccFormer}.Comment: Code is available at https://github.com/zhangyp15/OccForme

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection

    Full text link
    3D object Detection with LiDAR-camera encounters overfitting in algorithm development which is derived from the violation of some fundamental rules. We refer to the data annotation in dataset construction for theory complementing and argue that the regression task prediction should not involve the feature from the camera branch. By following the cutting-edge perspective of 'Detecting As Labeling', we propose a novel paradigm dubbed DAL. With the most classical elementary algorithms, a simple predicting pipeline is constructed by imitating the data annotation process. Then we train it in the simplest way to minimize its dependency and strengthen its portability. Though simple in construction and training, the proposed DAL paradigm not only substantially pushes the performance boundary but also provides a superior trade-off between speed and accuracy among all existing methods. With comprehensive superiority, DAL is an ideal baseline for both future work development and practical deployment. The code has been released to facilitate future work on https://github.com/HuangJunJie2017/BEVDet

    High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogen receptor α (ERα) is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE) with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2.</p> <p>Results</p> <p>From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131) as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE). In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene.</p> <p>Conclusion</p> <p>We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.</p
    corecore